The role of digital pathology and artificial intelligence-assisted analysis in breast cancer diagnosis

Authors

DOI:

https://doi.org/10.5281/zenodo.14602751

References

Misra A, Misra PK, Kumar H, Reddy TV, Ramamurthy S, Rao KG. Role of artificial intelligence in precision pathology of breast cancer. AIP Conference Proceedings, 2023;2603(1):020021.

Acs B, Rantalainen M, Hartman J. Artificial intelligence as the next step towards precision pathology. J Intern Med. 2020;288(1):62-81.

Smine Z, Poeta S, De Caluwé A, Desmet A, Garibaldi C, Brou Boni K, et al. Automated segmentation in planning-CT for breast cancer radiotherapy: A review of recent advances. Radiother Oncol. 2024;202:110615.

Golden JA. Deep Learning Algorithms for Detection of Lymph Node Metastases From Breast Cancer: Helping Artificial Intelligence Be Seen. JAMA. 2017;318(22):2184-6.

Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence. Lancet Oncol. 2019;20(5):e253-e261.

Tizhoosh HR, Pantanowitz L. Artificial Intelligence and Digital Pathology: Challenges and Opportunities. J Pathol Inform. 2018;9:38.

Dimitriou N, Arandjelović O, Caie PD. Deep Learning for Whole Slide Image Analysis: An Overview. Front Med (Lausanne). 2019;6:264.

Komura D, Ishikawa S. Machine Learning Methods for Histopathological Image Analysis. Comput Struct Biotechnol J. 2018;16:34-42.

Downloads

Published

2024-12-30

How to Cite

1.
Keser Sahin HH. The role of digital pathology and artificial intelligence-assisted analysis in breast cancer diagnosis. J Clin Trials Exp Investig [Internet]. 2024 Dec. 30 [cited 2025 Jan. 18];3(4):153-5. Available from: https://jctei.com/index.php/jctei/article/view/151